Быть учителем - самая благородная миссия на Земле: учитель своими руками творит характер, индивидуальность,личность ребенка, творит его Будущее и, в конечном счете, - Будущее планеты.



Архимед
(Аρχιμήδης)
(287 до н. э. — 212 до н. э.)
Древнегреческий математик, физик, механик и инженер из Сиракуз. Сделал множество открытий в геометрии. Заложил основы механики, гидростатики. Автор ряда важных изобретений.
Иоганн Бернулли
(Johann Bernoulli)
(27.07.1667—1.01.1748)
Швейцарский математик, младший брат Якоба Бернулли, отец Даниила Бернулли.
Иоганн Бернулли создал первую парижскую школу анализа. Указал методы интегрирования рациональных дробей, вычисления площадей плоских фигур, вывел правило раскрытия неопределенностей.
Иоганн Бернулли поставил классическую задачу о геодезических линиях и нашёл характерное геометрическое свойство этих линий, а позднее вывел их дифференциальное уравнение. Задача о брахистотроне, предложенная Бернулли, дала толчок развитию вариационного исчисления.

Якоб Бернулли
(Jakob Bernoulli)
(27.12.1654 — 16.08.1705)
Швейцарский математик, старший брат Иоганна Бернулли, профессор математики Базельского университета.
Якобу Бернулли принадлежат значительные достижения в аналитической геометрии, теории рядов, дифференциальном исчислении, теории чисел, где его именем названы «числа Бернулли», теории вероятностей.

Карл Теодор Вильгельм Вейерштрасс
(Karl Theodor Wilhelm Weierstraß)
(31.10.1815 — 19.02.1897)
Выдающийся немецкий математик. Его исследования существенно обогатили математический анализ, теорию специальных функций, вариационное исчисление, дифференциальную геометрию и линейную алгебру. Вейерштрасс сформулировал логическое обоснование анализа на основе построенной им теории действительных (вещественных) чисел. Дал строгое доказательство основных свойств непрерывных функций. Вейерштрасс доказал, что любая непрерывная функция допускает представление равномерно сходящимся рядом многочленов. Он далеко продвинул теорию эллиптических и абелевых функций, заложил основы теории целых функций и функций нескольких комплексных переменных. Создал теорию делимости степенных рядов.

Франсуа Виет
(François Viète)
(1540 — 13.02.1603)
Французский математик, основоположник символической алгебры.
Виет ввёл буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений; благодаря этому стало впервые возможным выражение свойств уравнений и их корней общими формулами. Ему принадлежит установление единообразного приёма решения уравнений 2-й, 3-й и 4-й степеней. Установил зависимости между корнями и коэффициентами уравнений.

Виктор Яковлевич Буняковский
(16.12.1804 — 12.12.1889)
Русский математик, член Петербургской Академии Наук (1830) и ее вице-президент (1864-1889гг.). Больше всего работал по теории чисел и теории вероятностей. Изобрёл: планиметр, пантограф, прибор для измерения квадратов, самосчёты Буняковского — вычислительный механизм, основанный на принципе действия русских счётов.

Рене Декарт
(Rene Descartes)
(31.03.1596 — 11.02.1650)
Математик, физик, философ. Основатель аналитической геометрии.Основные труды Декарта – «Рассуждение о методе» (1637), «Правила для руководства ума» (1701), «Трактат о свете» (1664) и др. Также ученый рассматривал символику Виета, многочлены, решения алгебраических уравнений, комплексные числа (их Декарт называл «ложными»). Кроме того, Декарт изучал механику, оптику, рефлекторную деятельность человека.
Математические исследования Декарта тесно связаны с его философскими и физическими работами. В «Геометрии» (1637) Декарт впервые ввёл понятие переменной величины и функции.
В аналитической геометрии основным достижением явился созданный им метод прямолинейных координат.
С именем Декарта связаны такие понятия, как координаты, произведение, парабола, лист, овал и др.

Иоганн Карл Фридрих Гаусс
(Johann Carl Friedrich Gauß)
(30.04.1777 — 23.02.1855)
Выдающийся немецкий математик, астроном и физик. С именем Гаусса связаны фундаментальные исследования почти во всех основных областях математики: алгебре, дифференциальной и неевклидовой геометрии, в математическом анализе, теории функций комплексного переменного, теории вероятностей, а также в астрономии, геодезии и механике.
Гаусс дал первое строгое доказательство основной теоремы алгебры. Он открыл кольцо целых комплексных гауссовых чисел, создал для них теорию делимости и с их помощью решил немало алгебраических проблем. Указал геометрическую модель комплексных чисел и действий с ними.

Эварист Галуа
(Evariste Galois)
(26.10.1811 – 30.05.1832)
Выдающийся французский математик, основатель современной высшей алгебры. Он заложил основы современной алгебры, вышел на такие фундаментальные понятия, как группа (Галуа первым использовал этот термин, активно изучая симметрические группы) и поле (конечные поля носят название полей Галуа).
Галуа исследовал возможность нахождения общего решения уравнения произвольной степени, то есть возможность выразить его корни через коэффициенты, используя только арифметические действия и радикалы. Открытия Галуа положили начало новому направлению — теории абстрактных алгебраических структур.

Со́фья Васи́льевна Ковале́вская
(15.01.1850 — 10.02.1891)
Русский математик, писательница, член-корреспондент Петербургской Академии наук. Первая в России и в Северной Европе женщина-профессор математики.
Получила домашнее образование, брала уроки высшей математики у известного педагога А.Н. Страннолюбского. В 1869 году училась в Гейдельбергском университете у Кенигсбергера, а с 1870 года по 1874 год в Берлинском университете у К. Вейерштрасса. В 1874 году Гёттингенский университет, после защиты диссертации присвоил С.В. Ковалевской степень доктора философии.
В 1881 С.В. Ковалевская избрана в члены Московского математического общества.
В 1884 году становится профессором кафедры математики в Стокгольмском университете.
Лауреат премий Парижской и Шведской академии наук.
Наиболее важные исследования С.В. Ковалевской относятся к теории вращения твёрдого тела. Она открыла третий классический случай разрешимости задачи о вращении твёрдого тела вокруг неподвижной точки. Доказала существование аналитического (голоморфного) решения задачи Коши для систем дифференциальных уравнений с частными производными, исследовала задачу Лапласа о равновесии кольца Сатурна, получила второе приближение. Решила задачу о приведении некоторого класса абелевых интегралов третьего ранга к эллиптическим интегралам. Работала также в области теории потенциала, математической физики, небесной механики.

Андрей Николаевич Колмогоров
(урождённый Катаев)
(12.04.1903 — 20.10.1987)
Советский математик, один из крупнейших математиков ХХ века.
Колмогоров — один из основоположников современной теории вероятностей. Им получены фундаментальные результаты в топологии, геометрии, математической логике, классической механике, теории турбулентности, теории сложности алгоритмов, теории информации, теории функций, теории тригонометрических рядов, теории меры, теории приближения функций, теории множеств, теории дифференциальных уравнений, теории динамических систем, функциональном анализе и в ряде других областей математики и её приложений.
Колмогоров также автор новаторских работ по философии, истории, методологии и преподаванию математики.

Иоганн Петер Густав Лежён-Дирихле
(Johann Peter Gustav Lejeune Dirichlet)
(13.02.1805 — 05.05.1859)
Немецкий математик. Основные труды в области теории чисел и математического анализа. Дирихле доказал теорему о существовании бесконечно большого числа простых чисел во всякой арифметической прогрессии из целых чисел, первый член и разность которой — числа взаимно простые. К решению этих задач применил аналитические функции, названные функциями Дирихле.
В области математического анализа Дирихле впервые точно сформулировал и исследовал понятие условной сходимости ряда, дал строгое доказательство возможности разложения в ряд Фурье функции, имеющей конечное число максимумов и минимумов. Значительные работы Дирихле посвящены механике и математической физике, в частности, в теории потенциала.

Огюстен Луи Коши
(Augustin Louis Cauchy)
(21.08.1789 — 23.05.1857)
Французский математик, член Парижской академии наук, Лондонского королевского общества, Петербургской академии наук.
Работы Коши относятся к различным областям математики и математической физики. Он впервые дал строгое определение основным понятиям математического анализа — пределу, непрерывности, производной, дифференциалу, интегралу, сходимости ряда. В области комплексного анализа создал теорию интегральных вычетов. В математической физике глубоко изучил краевую задачу с начальными условиями, которая с тех пор называется «задача Коши».
Коши заложил основы математической теории упругости. Он рассматривал тело как сплошную среду и вывел систему уравнений для напряжений и деформаций в каждой точке. В работах по оптике Коши дал математическую разработку волновой теории света и теории дисперсии. Ему принадлежат также исследования по геометрии (о многогранниках), по теории чисел, алгебре, астрономии и во многих других областях науки.

Жозеф Луи Лагранж
(Joseph Louis Lagrange)
(25.01.1736 — 10.04.1813)
Французский математик и механик. Автор классического трактата «Аналитическая механика», в котором Лагранж расширил основы статики и механики и установил «общую формулу», также известную как принцип возможных перемещений. Формула конечных приращений и несколько других теорем названы его именем. Издал курс математического анализа в двух частях под названиями «Теория аналитических функций» (1797) и «Лекции по исчислению функций» (1801-1806). В 1898 был опубликован «Трактат о решении численных уравнений всех степеней». Сочинения Лагранжа по математике, астрономии и механике составляют 14 томов.
Наряду с Эйлером — лучший математик XVIII века. Особенно прославился исключительным мастерством в области далеко идущего обобщения и синтеза накопленного научного материала.

Пьер—Симон Лаплас
(Pierre-Simon Laplace)
(23.03.1749 — 05.03.1827)
Выдающийся французский математик, физик и астроном. Разработал методы математической физики, широко используемые и в наше время. Особенно важные результаты относятся к теории потенциала и специальным функциям. Его именем названо преобразование Лапласа и уравнение Лапласа.
Лаплас является одним из создателей теории вероятностей. Он развил и систематизировал результаты, полученные другими математиками, упростил методы доказательства. Доказал теорему об отклонении частоты появления события от его вероятности, которая теперь называется предельной теоремой Муавра — Лапласа. Развил теорию ошибок. Ввел теоремы сложения и умножения вероятностей, понятия производящих функций и математического ожидания.
Основные астрономические работы Лапласа посвящены небесной механике. Он решил сложные проблемы движения планет и их спутников, в частности Луны; разработал теорию возмущений траекторий планет, Солнца и Луны; предложил новый способ вычисления орбит; доказал устойчивость Солнечной системы; открыл причины ускорения в движении Луны.

Исаак Ньютон
(Isaac Newton)
(25.12.1642 — 20.03.1727)
Английский физик, математик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики.
Фундаментальные труды «Математические начала натуральной философии» (1687) и «Оптика» (1704). Ньютон разработал (независимо от Готфрида Лейбница) дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления. Построил зеркальный телескоп.

Готфрид Вильгельм фон Лейбниц
(Gottfried Wilhelm von Leibniz)
(01.06.1646 — 14.11.1716)
Немецкий философ, математик, юрист, дипломат. Независимо от Ньютона, создал математический анализ — дифференциальное и интегральное исчисление, основанные на бесконечно малых.
В 1684 году Лейбниц публикует первую в мире крупную работу по дифференциальному исчислению: «Новый метод максимумов и минимумов», в которой излагаются основы дифференциального исчисления, правила дифференцирования выражений. Используя геометрическое истолкование отношения dy/dx, он кратко разъясняет признаки возрастания и убывания, максимума и минимума, выпуклости и вогнутости, достаточные условия экстремума, а также точки перегиба. Попутно без каких-либо пояснений вводятся «разности разностей» (кратные дифференциалы), обозначаемые ddv.
В подходе Лейбница к математическому анализу были некоторые особенности. Лейбниц мыслил высший анализ не кинематически, как Ньютон, а алгебраически. В своих работах он понимал бесконечно малые как актуальные объекты, сравнимые между собой только если они одного порядка.
Николай Иванович Лобачевский
(20.11.1792 — 12.02.1856)
Русский математик, создатель неевклидовой геометрии, названной его именем, деятель университетского образования и народного просвещения.
Открытие Лобачевского (1826, опубликованное 1829-30), не получившее признания современников, совершило переворот в представлении о природе пространства, в основе которого более 2 тыс. лет лежало учение Евклида, и оказало огромное влияние на развитие математического мышления.
Лобачевский получил ряд ценных результатов и в других разделах математики: так, в алгебре он разработал новый метод приближённого решения уравнений, в математическом анализе получил ряд тонких теорем о тригонометрических рядах, уточнил понятие непрерывной функции и др.
В разные годы он опубликовал несколько блестящих статей по математическому анализу, алгебре и теории вероятностей, а также по механике, физике и астрономии.

Блез Паскаль
(Blaise Pascal )
(19.06.1623 — 19.08.1662)
Французский религиозный философ, писатель, математик и физик. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики. Написал первую работу о конических сечениях, в которой высказал одну из важных теорем проективной геометрии. Паскаль посвятил ряд работ арифметическим рядам и биномиальным коэффициентам.
Большой вклад внес Паскаль и в разработку исчисления бесконечно малых. Особенно важен его «Трактат о синусах четверти круга». Паскаль здесь ввел эллиптические интегралы, которые позже сыграли важную роль в анализе и его применениях. Кроме того, ученый доказал ряд теорем касающихся замены переменных и интегрирования по частям.

Жюль Анри Пуанкаре
(Jules Henri Poincar)
(29.04.1854 — 17.07.1912)
Гениальный французский ученый широкого профиля, внесший большой вклад во многие разделы математики, физики и механики.
Основоположник качественных методов теории дифференциальных уравнений и топологии. Создал основы теории устойчивости движения.
В его статьях до работ А. Эйнштейна были сформулированы основные положения специальной теории относительности, такие как условность понятия одновременности, принцип относительности, постоянство скорости света, синхронизация часов световыми сигналами, преобразования Лоренца, инвариантность уравнений Максвелла и др. Разработал и применил метод малого параметра к задачам небесной механики, провел классическое исследование задачи трех тел. В философии создал новое направление, получившее название конвенционализма.

Пьер де Ферма
(Pierre de Fermat)
(17.08.1601 — 12.01.1665)
Французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе. Блестящий полиглот. Наиболее известен формулировкой Великой теоремы Ферма.
На досуге изучал математику, занимался исследованиями в области теории чисел, геометрии, алгебры, теории вероятностей. Большинство математических открытий ферма стали известны из его писем Б.Паскалю, Р.Декарту, Дж. Валлису и др. В теории чисел Ферма дал способ систематического нахождения всех делителей произвольного числа. Ферма вместе с Р. Декартом является основоположником аналитической геометрии.

Леонард Эйлер
(Leonhard Euler)
(04.04.1707 — 07.09.1783)
Швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук.
Эйлер — автор более чем 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др.
Благодаря Эйлеру в математику вошли общая теория рядов, «формула Эйлера», углы Эйлера, операция сравнения по целому модулю, теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e, обозначение i для мнимой единицы, гамма-функция и многое другое.